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                                                                                             Abstract

The Thesis aims at in depth study of Graph based approach to find Association Rule 

Mining and Association Rule Mining without pre-assign weights and its implementation. 

In the past, several authors have proposed various association rule mining algorithms 

with and without pre-assigned weights. The Thesis consists of two parts. Part two 

consists of graph based association rule mining for primitive as well as items which have 

concept hierarchy. Complete implementation has been done in C++ on various real life 

datasets. Part one consisted of association rule mining without pre-assigned weights using 

HITS algorithm.

.
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Chapter 1

                                                                           INTRODUCTION

We are in an age often referred to as the information age.  In this information age, 

because we believe that information leads to power and success, and thanks to 

sophisticated technologies such as computers, satellites, etc., we have been collecting 

tremendous amounts of information like business transactions, scientific data, medical 

data, satellite data, surveillance video & pictures, world wide web repositories to name a 

few. With the enormous amount of data stored in files, databases, and other repositories, 

it is increasingly important, if not necessary, to develop powerful means for analysis and 

perhaps interpretation of such data and for the extraction of interesting knowledge that 

could help in decision-making.  

Data Mining, also popularly known as Knowledge Discovery in Databases (KDD), refers 

to the nontrivial extraction of implicit, previously unknown and potentially useful 

information from data in databases. While data mining and knowledge discovery in 

databases (or KDD) are frequently treated as synonyms, data mining is actually part of 

the knowledge discovery process.

The kinds of patterns that can be discovered depend upon the data mining tasks 

employed. By and large, there are two types of data mining tasks: descriptive data mining

tasks that describe the general properties of the existing data, and predictive data mining

tasks that attempt to do predictions based on inference on available data.

One of the popular descriptive data mining techniques is Association rule mining (ARM), 

owing to its extensive use in marketing and retail communities in addition to many other 

diverse fields. Mining association rules is particularly useful for discovering relationships 

among items from large databases.

Association rule mining deals with market basket database analysis for finding frequent 

itemsets and generate valid and important rules. Various association rules mining 

algorithms have been proposed in 1993 by Aggrawal et. al. [1,2] viz. Apriori, Apriori-

TID and Apriori Hybrid. Other algorithms for finding frequent itemsets include pincer

search [3], FP (frequent pattern) tree [4]. Apriori- generation function follows bottom- up 

approach. Pincer search algorithm o finds frequent itemsets but it follows both bottom-
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up and top-down approach. Frequent pattern tree also generate frequent itemsets without 

candidate generation.

In all algorithms discussed above, all items and transaction have equal importance.

However in practice this is not true. Given a large set of market basket transaction with 

number of items, different items might have different weights or importance, and also 

different transactions may have different weights. This is termed as in weighted 

association rule mining (WARM) [5]. In 2008, Sun et. al [6] proposed yet another 

algorithm for finding frequent itemsets without preassigned weights. The advantage of 

this approach is that weights for items and transactions can be found from data itself 

rather than preassigning weights.

Yen et. al [7] proposed a Graph-Based Approach for Discovering Various Types of 

Association Rules in which we can find association rule mining using graph, and it gives 

better result as compared to Apriori algorithms. The graph based approach has been 

extended to Generalized Association Rule Mining which is better than cumulate 

algorithm [8].

Graph based association rule mining uses bit vector data structure for storing datasets, 

which is better than any other approach to store datasets. In the second part of the Thesis, 

two Graph based approaches have been considered. First is Primitive association rule 

mining and other is generalized association rule mining. In both the approaches, graphs

are constructed and frequent itemsets are found from graphs. 
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Chapter 2

                                                   ASSOCIATION RULE MINING

2.1 Overview

Association rule mining (Aggarwal et.al. al [1]., 1993) is one of the important problems 

of data mining. The goal of the Association rule mining is to detect relationships or 

associations between specific values of categorical variables in large data sets. This is a 

common task in many data mining projects. Suppose I is a set of items, D is a set of 

transactions, an association rule is an implication of the form X=>Y, where X, Y are 

subsets of I, and X, Y do not intersect. Each rule has two measures, support and 

confidence. Association rule mining was originally proposed in the domain of market 

basket data. The association rule mining on Market "Basket Data" is Boolean Association 

Rule Mining in which only Boolean attributes are considered. In order to do association 

rule mining on quantitative data, such as Remotely Sensing Image data, some mapping 

should be done from quantitative data to Boolean data. The main idea here is to partition 

the attribute values into Transaction Patterns. Basically, this technique enables analysts 

and researchers to uncover hidden patterns in large data sets.

2.2 Notation and Basic Concepts

Let  = {i1, i2 … im} be a universe of items. Also, let T = {t1, t2 …tn} be a set of all 

transactions collected over a given period of time. To simplify a problem, we will assume 

that every item i can be purchased only once in any given transaction t. Thus t   (“t 

is a subset of omega”). In reality, each transaction t is assigned a number, for example a 

transaction id (TID). Let now A be a set of items (or an itemset). A transaction t is said to 

contain A if and only if A  t. Now, mathematically, an association rule will be an 

implication of the form

                                                               A B 

Where both A and B are subsets of  and A  B =  (“the intersection of sets A and B is 

an empty set”).
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2.2.1 Support

The support of an itemset is the fraction of the rows of the database that contain all of the 

items in the itemset. Support indicates the frequencies of the occurring patterns. 

Sometimes it is called frequency. Support is simply a probability that a randomly chosen 

transaction t contains both itemsets A and B. Mathematically,

Support (A  B) t = P (A  t B  t)

We will use a simplified notation that

                                         Support (A  B) = P (A  B)

2.2.2 Confidence

Confidence denotes the strength of implication in the rule. Sometimes it is called 

accuracy. Confidence is simply a probability that an itemset B is purchased in a randomly 

chosen transaction t given that the itemset A is purchased. Mathematically,

Confidence (A  B) t = P (B  t | A  t)

We will use a simplified notation that

                                       Confidence (A  B) = P (B | A)

In general, a set of items (such as the antecedent or the consequent of a rule) is called an 

itemset. The number of items in an itemset is called the length of an itemset. Itemsets of 

some length k are referred to as k-itemsets. Generally, an association rules mining 

algorithm contains the following steps: 

• The set of candidate k-itemsets is generated by 1-extensions of the large (k -1)- itemsets                               

generated in the previous iteration. 

• Supports for the candidate k-itemsets are generated by a pass over the database. 

• Itemsets that do not have the minimum support are discarded and the remaining 

itemsets are called large k-itemsets.

This process is repeated until no more large itemsets are found[13].
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                                                                        /)(BAPBP

2.3 Market-Basket Analysis

The market-basket problem assumes we have some large number of items, e.g., bread, 

milk. Customers fill their market baskets with some subset of the items, and we get to 

know what items people buy together, Even if we don't know who they are. Marketers 

use this information to position items, and control the way a typical customer traverses 

the store.

In addition to the marketing application, the same sort of question has the following uses:

1. Baskets = documents; items = words. Words appearing frequently together in 

documents may represent phrases or linked concepts and can be used for intelligence 

gathering.

2. Baskets = sentences, items = documents. Two documents with many of the same 

sentences could represent plagiarism or mirror sites on the Web.

2.3.1Goals for Market-Basket Mining

2.3.1.1 Association rules:

      We can define association rule as follows:

Let I = {i1, i2, ….., im} be a set of literals or items, D = {t1, t2, .. , tn} be a set of 

transactions, where each transaction ti is an itemset such that ti I. Each transaction, t, 

has a transaction-id (t.id) and an itemset (t.Itemset), i.e., t = (t.id, t.Itemset). A 

transaction t contains an itemset X if X is a subset of t.Itemset. An Association rule, 

R, denoted by R: X-> Y, where X and Y are itemsets that don t intersect. Each rule R 

has two value measures, support and confidence, denoted by sup(R) and conf(R) 

respectively. The support of an item set, X, has support, s, in transaction set, D, if s% 

of transaction in D contain X. Then, sup(R: X Y) = sup(X Y), conf(R: X Y) = sup(X 

Y) / sup(X) Different transactions may contain same itemset, especially for remote 

sensed imagery. This suggests a way to eliminate duplicate calculation. Some 

concepts are given below. Let U = {t | t is any possible transaction}, while D = {t| t is 

a transaction already happened}. 
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2.3.1.2 Causality: 

Ideally, we would like to know that in an association rule the presence of X1,…., 

Xm actually causes Y to be bought. However, "causality” is an elusive concept. 

Nevertheless, for market-basket data, the following test suggests what causality 

means. If we lower the price of diapers and raise the price of beer, we can lure 

diaper buyers, who are more likely to pick up beer while in the store, thus 

covering our losses on the diapers. That strategy works because diapers cause 

beer. However, working it the other way round, running a sale on beer and raising 

the price of diapers, will not result in beer buyers buying diapers in any great 

numbers, and we lose money.

2.3.1.3 Frequent Itemsets:

In many (but not all) situations, we only care about association rules or causalities 

involving sets of items that appear frequently in baskets. For example, we cannot 

run a good marketing strategy involving items that no one buys anyway. Thus, 

much data mining starts with the assumption that we only care about sets of items 

with high support; i.e., they appear together in many baskets. We then find 

association rules or causalities only involving a high-support set of items i.e., 

{X1,…., Xm}. Y must appear in at least a certain percent of the baskets, called 

the support threshold.

The AIS algorithm was the first algorithm proposed for mining association rule [1]. In 

this algorithm only one item consequent association rules are generated, which means 

that the consequent of those rules only contain one item, for example we only generate 

rules like X∩Y→Z but not those rules as X→Y∩Z. The main drawback of the AIS 

algorithm is too many candidate itemsets that finally turned out to be small are generated, 

which requires more space and wastes much effort that turned out to be useless. At the 

same time this algorithm requires too many passes over the whole database. Apriori is 

more efficient during the candidate generation process [2]. Apriori uses pruning 

techniques to avoid measuring certain itemsets, while guaranteeing completeness. These 
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are the itemsets that the algorithm can prove will not turn out to be large. However there 

are two bottlenecks of the Apriori algorithm. One is the complex candidate generation 

process that uses most of the time, space and memory. Another bottleneck is the multiple 

scan of the database. Based on Apriori algorithm, many new algorithms were designed 

with some modifications or improvements [13].  

2.4 Algorithm for Finding Frequent Itemsets

1. Given support threshold s, in the first pass we find the items that appear in at least 

fraction s of the baskets. This set is called L1, the frequent items. 

2. Pairs of items in L1 become the candidate pairs C2 for the second pass. We hope that 

the size of C2 is not so large that there is not room for an integer count per candidate pair. 

The pairs in C2 whose count reaches s are the frequent pairs, L2.

3. The candidate triples, C3 are those sets {A; B; C} such that all of {A; B}, {A; C}, and 

{B; C} are in L2. On the third pass, count the occurrences of triples in C3; those with a 

count of at least s are the frequent triples, L3.

4. Proceed as far as you like (or the sets become empty). Li is the frequent sets of size i; 

Ci+1 is the set of sets of size i + 1 such that each subset of size i is in Li.

2.4.1 Apriori Algorithm

Input: Transaction T that contains all transaction with itemsets in each transaction

Output: All frequent Itemsets that satisfy minimum threshold condition

Start

Initialize L1=large 1-itemsets that contains all items in beginning i.e. L1 = I (I is item 

sets)

K=2
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While ( Lk-1  ≠  ) 
{
          Ck = Apriori-gen (Lk-1)   // Ck contains K-itemsets using Apriori-gen function 

          For all transactions t D 
         {
             Ct = subset (Ck, t) //check weather Ck belongs to Transaction t

              For all candidates c   Ct 
             {
                C.count++  
             }
       }
Add Lk to result list 

Lk = {c    Ck | c.count >= minsup} 
Increment k by 1
}
End

2.4.2 Apriori Candidate Generation and Pruning Function

The Apriori-gen function takes an argument Lk-1, the set of all large (k - 1)-itemsets. It 

returns a superset of the set of all large k-itemsets. The function works as follows. First, 

in the join step, we join Lk-1 with Lk-1:

Insert into Ck

Select p.item1, p.item2, ..., p.itemk-1, q.itemk-1

From Lk-1 p, Lk-1 q

Where p.item1 = q.item1, . . ., p.itemk-2 = q.itemk-2,

p.itemk-1 < q.itemk-1;

Here, Ck is candidate k-itemsets, Lk-1 is large k-1 itemsets.

Similarly, SQL statement of candidate generation is

SELECT b1.item, b2.item, COUNT (*)

FROM L b1, L b2

WHERE b1.BID = b2.BID AND b1.item < b2.item

GROUP BY b1.item, b2.item
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HAVING COUNT (*) >= s;     

Output of this query is candidate k-itemsets. For this query L is large k-1 itemsets, s is 

threshold. 

After generation of candidate k itemsets then we have to prune itemsets from Ck which 

does not belongs to Lk-1 itemsets for each k-1 subset of Ck.

For all itemsets c Ck 

{

    For all (k-1)-subsets s of c

   {

        If (s does not belongs Lk-1) then delete c from Ck;

   }

}

2.5 Recent advances in association rule discovery 

A serious problem in association rule discovery is that the set of association rules can 

grow to be unwieldy as the number of transactions increases, especially if the support and 

confidence thresholds are small. As the number of frequent itemsets increases, the 

number of rules presented to the user typically increases proportionately. Many of these 

rules may be redundant. 

2.5.1 Redundant Association Rules 

To address the problem of rule redundancy, four types of research on mining association

rules have been performed. First, rules have been extracted based on user-defined 

templates or item constraints [24]. Secondly, researchers have developed interestingness 

measures to select only interesting rules. Thirdly,   researchers have  proposed inference 

*Referenced from infolab.stanford.edu/~ullman/mining/allnotes.pdf
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rules or inference systems to prune redundant rules and thus present smaller, and usually 

more understandable sets of association rules to the user [14]. Finally, new frameworks 

for mining association rule have been proposed that find association rules with different 

formats or properties [15]. Ashrafi et al [16] presented several methods to eliminate 

redundant rules and to produce small number of rules from any given frequent or frequent 

closed itemsets generated. Ashrafi et al [17] present additional redundant rule elimination 

methods that first identify the rules that have similar meaning and then eliminate those 

rules. Furthermore, their methods eliminate redundant rules in such a way that they never 

drop any higher confidence or interesting rules from the resultant rule set. Moreover, 

there is a need for human intervention in mining interesting association rules. Such 

intervention is most effective if the human analyst has a robust visualization tool for 

mining and visualizing association rules. Techapichetvanich and Datta [18] presented a 

three-step visualization method for mining market basket association rules. These steps 

include discovering frequent itemsets, mining association rules and finally visualizing the 

mined association rules. 

2.5.2 Other measures as interestingness of an association 

Omiecinski [19] concentrates on finding associations, but with a different slant. That is, 

he takes a different view of significance. Instead of support, he considers other measures, 

which he calls all-confidence, and bond. All these measures are indicators of the degree 

to which items in an association are related to each other. With all-confidence, an 

association is deemed interesting if all rules that can be produced from that association 

have a confidence greater than or equal to a minimum all-confidence value. Bond is 

another measure of the interestingness of an association. With regard to data mining, it is 

similar to support but with respect to a subset of the data rather than the entire data set. 

The idea is to find all itemsets that are frequent in a set of user-defined time intervals. In 

this case, the characteristics of the data define the subsets not the end-user. Omiecinski 

[19] proved that if associations have a minimum all-confidence or minimum bond, then 

those associations will have a given lower bound on their minimum support and the rules 

produced from those associations will have a given lower bound on their minimum 

confidence as well. The performance results showed that the algorithm can find large 
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itemsets efficiently. In [15], the authors mine association rules that identify correlations 

and consider both the absence and presence of items as a basis for generating the rules. 

The measure of significance of associations that is used is the chi-squared test for 

correlation from classical statistics. In [20], the authors still use support as part of their 

measure of interest of an association. However, when rules are generated, instead of 

using confidence, they use a metric that they call conviction, which is a measure of 

implication and not just co-occurrence. In [21], the authors present an approach to the 

rare item problem. The dilemma that arises in the rare item problem is that searching for 

rules that involve infrequent (i.e., rare) items requires a low support but using a low 

support will typically generate many rules that are of no interest. Using a high support 

typically reduces the number of rules mined but will eliminate the rules with rare items. 

The authors attack this problem by allowing users to specify different minimum supports 

for the various items in their mining algorithm. 

2.5.3 Negative Association Rules 

Typical association rules consider only items enumerated in transactions. Such rules are 

referred to as positive association rules. Negative association rules also consider the same 

items, but in addition consider negated items (i.e. absent from transactions). Negative 

association rules are useful in market-basket analysis to identify products that conflict 

with each other or products that complement each other. Mining negative association 

rules is a difficult task, due to the fact that there are essential differences between positive 

and negative association rule mining. The researchers attack two key problems in 

negative association rule mining: (i) how to effectively search for interesting itemsets, 

and (ii) how to effectively identify negative association rules of interest. Brin et. al [15] 

mentioned for the first time in the literature the notion of negative relationships. Their 

model is chi-square based. They use the statistical test to verify the independence 

between two variables. To determine the nature (positive or negative) of the relationship, 

a correlation metric was used. In [22] the authors present a new idea to mine strong 

negative rules. They combine positive frequent itemsets with domain knowledge in the 

form of taxonomy to mine negative associations. However, their algorithm is hard to 

generalize since it is domain dependant and requires a pre-defined taxonomy. Wu et al 
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[23] derived a new algorithm for generating both positive and negative association rules. 

They add on top of the support-confidence framework another measure called mininterest

for a better pruning of the frequent itemsets generated. 

Association rule mining has a wide range of applicability such market basket analysis, 

medical diagnosis/ research, Website navigation analysis, homeland security and so on. 

The conventional algorithm of association rules discovery proceeds in two steps. All 

frequent itemsets are found in the first step. The frequent itemset is the itemset that is 

included in at least minsup transactions. The association rules with the confidence at 

least minconf are generated in the second step.  End users of association rule mining tools 

encounter several well known problems in practice. First, the algorithms do not always 

return the results in a reasonable time. It is widely recognized that the set of association 

rules can rapidly grow to be unwieldy, especially as we lower the frequency 

requirements. The larger the set of frequent itemsets the more the number of rules 

presented to the user, many of which are redundant. This is true even for sparse datasets, 

but for dense datasets it is simply not feasible to mine all possible frequent itemsets, let 

alone to generate rules, since they typically produce an exponential number of frequent 

itemsets; finding long itemsets of length 20 or 30 is not uncommon. Although several 

different strategies have been proposed to tackle efficiency issues, they are not always 

successful [13].   
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                                                      CHAPTER 3

GRAPH BASED APPROACH FOR  FINDING FREQUENT 

ITEMSETS

This chapter discusses graph-based approach for discovering various types of association 

rules viz

 Primitive Association Rules.

 Generalized Association Rules. 

Yen et. Al [7] has purposed a way to find out association rule mining using graph. For 

finding association rule mining, the concept of graphs and bit vector model is used.

A primitive association rule is an association rule which describes the association among 

database items which appear in the database. A primitive association pattern is a large 

itemset in which each item is a database item. A generalized association rule describes 

the association among database items as well as items of concept hierarchy (taxonomy). 

Concept hierarchy of the items can usually be derived. An example of concept hierarchy 

is shown in Fig. 3.1 and 3.2, in which the terminal nodes are database items, and the non-

terminal nodes are generalized items. 

Fig: 3.1

.
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Fig: 3.2

In concept hierarchy, if there is a path between nodes y and x, where y is a “higher 

concept” of x, then y is called an ancestor of x and x a descendant of y. Here “higher 

concept” means more general items are created in concept hierarchy. Support of non-leaf 

item is the number of 1’s in bit-vector of that item. I.e if x is leaf node in concept 

hierarchy then support of item x is number of 1’s in bit-vector. Otherwise use logical OR 

operation over bit-vectors of children. Association rules may exist at higher level 

concepts if the itemsets at the lower level concepts cannot reach the minimum support. 

Hence, significant association rules may not be discovered if we only consider database 

items which are the lowest level concepts in the concept hierarchy. A generalized 

association rule describes the association among items which can be generalized items or 

database items. Here we are creating concept hierarchy after that we can find frequent 

large itemsets which is more general among the items. In traditional approaches only 

transactions and items are used for finding frequent itemsets, but using generalized 

association rule mining we can find frequent itemsets among different concept hierarchy 

also. This is very important for those types of transactions in which number of items in 

each transaction is less or most of the items appeared in few transactions. If number of 

items which appeared less in transaction or most of items appeared in few transactions 

then we can not find frequent itemsets but using concept hierarchy we can find large 
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number of frequent itemsets and we can find number of rules among different concept 

hierarchy and we can find large itemsets in which each item is a generalized item or 

database item.

There are few steps to find frequent itemsets and association rules. These are:

 Numbering phase: In this phase, all items are assigned an integer number.

 Large item generation phase: This phase generates large items and records related 

information. A large item is an item whose support is no less than a user specified 

minimum support.

 Association graph construction phase: This phase constructs an association graph 

to indicate the associations between large items.

 Association pattern generation phase: This phase generates all association patterns 

by traversing the constructed association graph.

 Association rule generation phase: The association rules can be generated directly 

according to the corresponding association patterns.

3.1   Primitive Association Rule Mining

In this section, an algorithm PAPG (Primitive Association Pattern Generation) is 

presented to generate primitive association patterns. Here, I describe the first four phases 

discussed in previous section for the algorithm PAPG. 

3.1.1 Association Graph Construction

In the numbering phase, the algorithm PAPG arbitrarily assigns each item a unique 

integer number. In the large item generation phase, PAPG scans the database and builds a 

bit vector for each item. The length of each bit vector is the number of transactions in the 

database. If an item appears in the ith transaction, the ith bit of the bit vector associated 

with this item is set to 1. Otherwise, the ith bit of the bit vector is set to 0. The bit vector 

associated with item i is denoted as BVi. The number of 1s in BVi is equal to the number 

of transactions which support the item i, that is, the support for the item i. 
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Property 1. The support for the itemset { i1; i2; . . . ; ik} is the number of 1s in BVi1 ^ 

BVi2 ^ . . . ^ BVik, where the notation ^ is a logical AND operation.

In the association graph construction phase, PAPG applies the algorithm AGC 

(Association Graph Construction) to construct association graph. The AGC algorithm is 

described as follows: For every two large items i and j. i < j., if the number of 1s in BVi ^ 

BVj achieves the user-specified minimum support, a directed edge from item i to item j is 

created. Also, itemset (i; j) is a large 2-itemset. 

3.1.2 Primitive Association Pattern Generation

The large 2-itemsets are generated after the association graph construction phase. In the 

association pattern generation phase, the algorithm LGDE (Large itemset Generation by 

Direct Extension) is proposed to generate large k-itemsets (k > 2), which is described as 

follows:

For each large k-itemsets (k≥ 2), the last item of the k-itemset is used to extend the large 

itemset into k+1-itemsets.

Lemma 1. If an itemset is not a large itemset, then any itemset which contains this 

itemset cannot be a large itemset. 

Lemma 2. For a large itemset (i1; i2; . . . ; ik), if there is no directed edge from item ik to 

an item v, then itemset (i1; i2; . . . ; ik; v) cannot be a large itemset. 

Suppose (i1; i2; . . . ; ik) is a large k-itemset. If there is no directed edge from item ik to 

an item v, then the itemset need not be extended into k. 1-itemset, because .i1; i2; . . . ; ik; 

v. must not be a large itemset according to Lemma 2. If there is a directed edge from item 

ik to an item u, then the itemset (i1; i2; . . . ; ik) is extended into k+1-itemset (i1; i2; . . . ; 

ik; u). The itemset (i1; i2; . . . ; ik; u) is a large k+1-itemset if the number of 1s in BVi1 ^ 

BVi2 ^ . . . ^ BVik ^ BVu achieves the minimum support. If no large k+1-itemsets can be 

generated, the algorithm LGDE terminates. 
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Algorithm of Primitive Association Rule Mining

Input: Transaction T that contains all transaction with itemsets in each transaction

Output: All frequent Itemsets that satisfy minimum threshold condition

Start

Assign numbers to each item

For each item i, Convert transaction table into bit vector

For each item i 

{

If (number of 1’s achieve minimum support condition of item i)

{

Add this item in large 1-itemsets

}

}

Generate candidate 2-itemsets using large 1- itemsets

For each candidate 2-itemsets (i, j) 

{

If(number of 1’s is achieve minimum support condition after logical AND operation of 

item I and j)

{

Add it to large 2–itemsets and create an edge between vertex i to j

}

}

For each large k-itemsets (i1; i2; . . . ; ik)

{

If (there is an edge item ik to any vertex (item) v and number of 1’s is achieve minimum 

support condition after logical AND operation of items i1, i2,…, ik and v)

{

Add (i1; i2; . . . ; ik, v) as large k+1 itemsets.

}

}

Stop
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Example 1:- Consider the database in Table 3.1. Each record is a <TID, Itemset> pair, 

where TID is the identifier of the corresponding transaction, and Itemset records the 

items purchased in the transaction. Assume that the minimum

TID ITEMSETS
100 ABC
200 ABCD
300 ABCDE
400 BD
500 ACF
600 CDE

TABLE 3.1

ITEMSETS (ITEM NO.) BIT-VECTOR(BV)
A(1) 111010
B(2) 111100
C(3) 111011
D(4) 011101
E(5) 001001
F(6) 000010

TABLE 3.2 (Bit vector for corresponding items)

Support is 50 percent (i.e., 3 transactions). After the numbering phase, the numbers of the 

items A, B, C, D, E and F are 1, 2, 3, 4, 5 and 6, respectively. In the large item generation 

phase, the large items found in the database are items 1, 2, 3  and 4, and BV1, BV2, BV3, 

BV4 BV5 and BV6 are 111010, 111100., 111011, 011101 , 001001 and 000010, 

respectively.

For finding large two items use logical AND operation between large 1 itemsets.

BV1^BV2= 111010 ^ 111100 =111000 (3)

BV1^BV3= 111010 ^ 111011=111010 (3)

BV1^BV4= 111010 ^011101 =011000 (2)

BV2 ^ BV3=111100 ^ 111011=111000 (3)

BV2 ^ BV4=111100 ^011101=011100 (3)

BV3 ^ BV4=111011 ^011101=011001 (3)

So large two items are{ (1,2), (1,3), (2,3), (2,4), (3,4)}. And create an edge between these 

vertices, which is shown in figure 3.3.
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Fig 3.3: Association Graph of Table-3.1

After the association graph construction phase, the large 2-itemsets (1, 2), (1, 3), (2, 3), 

(2, 4), and (3, 4) are generated. For the large 2-itemset (1, 2), there is a directed edge 

from the last item 2 of the itemset (1, 2) to items  3 and 4 in the association graph shown 

in Fig. 2. Hence, the 2-itemset (1, 2) is extended into 3-itemset (1, 2, and 3) and (1, 2, 4). 

The number of 1s in BV1^ BV2 ^ BV3 (111010^ 111100^ 111011 = 111000) is 3. 

Hence,

The 3-itemset (1, 2, and 3) is a large 3-itemset, since the number of 1s in its bit vector is 

no less than the minimum support threshold.

The number of 1s in BV1 ^ BV2 ^ BV4 (111010^ 111100^ 011101 = 011000) is 2. 

Hence, the 3-itemset (1, 2, and 4) is a not large 3-itemset, since the number of 1s in its bit 

vector is less than the minimum support threshold. 

For the large 2-itemset (1, 3), there is a directed edge from the last item 3 of the itemset 

(1, 3) to items 4 in the association graph shown in Fig. 2. Hence, the 2-itemset (1, 3) is 

extended into 3-itemset (1, 3, 4). The number of 1s in BV1^ BV3 ^ BV4 (111010^

111011^ 0111011 = 011010) is 3. Hence, the 3-itemset (1, 3, and 4) is a large 3-itemset, 

since the number of 1s in its bit vector is no less than the minimum support threshold.

So large 3-itemsets {(1, 2, 3), (1, 3, 4)}

  For the large 3-itemset (1, 2, 3), there is a directed edge from the last item 3 of the 

itemset (1, 2, 3) to items 4 in the association graph shown in Fig. 2. Hence, the 3-itemset 

(1, 2, 3) is extended into 4-itemset (1, 2, 3, 4). The number of 1s in BV1^ BV2 ^ BV3 ^ 

BV4 (111010^ 111100^ 111011^011101 = 011000) is 2. Hence, the 4-itemset (1, 2, 3, 

and 4) is a no large 3-itemset, since the number of 1s in its bit vector is less than the 

minimum support threshold.

The LGDE algorithm terminates because no large 5-itemsets can be further generated.

1 2

3 4
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3.2 Mining Generalized Association Rules

The algorithm GAPG (Generalized Association Pattern Generation) use to discover all 

generalized association patterns. In the following, we also describe the four phases for the 

algorithm GAPG.

To generate generalized association patterns, one can add all ancestors of each item in a 

transaction to the transaction and then apply the algorithm PAPG on the extended 

transactions. However, because if an item is a large item, then the 2-itemset which 

contains the item and its ancestor is also a large 2-itemset, the number of the edges in the 

association graph can be very large, and the LGDE algorithm needs to take much more 

time to traverse the association graph to generate all large itemsets.

In the numbering phase, GAPG applies the numbering method PON (Post order 

Numbering method) to number items at the concept hierarchies. For each concept 

hierarchy, PON numbers each item according to the following order: For each item at the 

concept hierarchy, after all descendants of the item are numbered, PON numbers this 

item immediately, and all items are numbered increasingly. After all items at a concept 

hierarchy are numbered, PON numbers items at another concept hierarchy. 

Lemma 3. If the numbering method PON is adopted to number items, and for every two 

items i and j (I < j), item Ө is an ancestor of item I but not an ancestor of item j, then Ө < 

j. 

Rationale. According to PON numbering method, after all descendants of an item are 

numbered, this item is numbered immediately, and these items are numbered 

increasingly. Hence, for an item i, if it is numbered, then its ancestor Ө must be 

numbered before the other item j which is not a descendant of item Ө is numbered. So,   

Ө < j.
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Large Item Generation

In the large item generation phase, GAPG builds a bit vector for each database item, and 

finds all large items (include database items and generalized items). Here, we assume that 

all database items are specific items. 

Lemma 4 Suppose items {i1; i2; . . . ; and im} are all specific descendants of the 

generalized item in. The bit vector BVin associated with item in is BVi1 ν BVi2 ν . . . ν  

BVim, and the number of 1s in BVi1 ν BVi2 ν . . . ν BVim is the support for item in, where 

the notation " ν " is a logical OR operation.

From Lemma 4, the bit vector associated with a generalized item is obtained by 

performing logical OR operations on the bit vectors associated with all specific 

descendants of the generalized item.

3.2.1 Generalized Association Graph Construction

In the association graph construction phase, GAPG applies the algorithm GAGC 

(Generalized Association Graph Construction) to construct a generalized association 

graph to be traversed. The algorithm GAGC is described as follows: For every two large 

items i and j (i < j), if item j is not an ancestor of item i and the Number of 1s in BVi ^ 

BVj achieves the user-specified minimum support, a directed edge from item i to item j is 

created. Also, itemset (i; j) is a large 2-itemset.

Lemma 5. If an itemset X is a large itemset, then any itemset generated by replacing an 

item in itemset X with its ancestor is also a large itemset. 

Lemma 6. If (the number of 1s in Bvi ^ BVj) ≥ minimum-support, then for each ancestor 

u of item i and for each ancestor v of item j, (the number of 1s in BVu ^ BVj) ≥ 

minimum-support and (the number of 1s in BVi ^ BVv.≥ minimum-support.

From Lemma 6, if an edge from item i to item j is created, the edges from item i to the 

ancestors of item j, which are not ancestors of item i, are also created. According to 

Lemma 3, the numbers of the ancestors of item i, who am not the ancestors of item j, am 
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all less than j. Hence, if an edge from item i to item j is created, the edges from the 

ancestors of item i, which are not ancestors of item j, to item j is also created. 

3.2.2 Generalized Association Pattern Generation

In the association pattern generation phase, GAPG applies to generate all generalized 

association patterns by traversing the generalized association graph.

Algorithm of Generalized Association Rule Mining

Input: Taxonomy (concept hierarchy) and Transaction T that contains all transaction 

with itemsets in each transaction.

Output: All frequent Itemsets that satisfy minimum threshold condition.

Start

Assign numbers in post order for to each item in taxonomy 

For each database item i, Convert transaction table into bit vector.

For non leaf items of taxonomy, construct bit vector using logical OR operation of its 

children

For each item i 

{

If (number of 1’s achieve minimum support condition of item i)

{

Add this item in large 1-itemsets

}

}

//Generate candidate 2-itemsets using large 1- itemsets

For each candidate 2-itemsets (i, j) 

{

If (number of 1’s is achieve minimum support condition after logical AND operation of 

item I and j and item I is not descendent of item j)

{

Add it to large 2–itemsets and create an edge between vertex i to j
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}

}

For each large k-itemsets (i1; i2; . . . ; ik)

{

If (there is an edge item ik to any vertex (item) v and number of 1’s is achieve minimum 

support condition after logical AND operation of items i1, i2,…, ik and v and there is 

parent-child relationship in this item)

{

Add (i1; i2; . . . ; ik, v) as large k+1 itemsets.

}

}

Stop

Example- Consider the database in Table 3.1 and the concept hierarchies in Fig. 3.1, 3.2. 

Assume that the minimum support = 40 percent.

TID Items
100 SONY, USB,  WEBCAM        
200 IBM, WEBCAM  
300 DELL, IBM, USB, WEBCAM
400 IBM, LG, FLSH-D   
500 IBM, DELL, HCL, USB
600 USB, FLASH-D, LG
700 SONY, HCL, FLASH-D
800 DELL , LG, USB, WEBCAM
900 USB, FLASH-D
1000 HCL, WEBCAM

Table 3.3- Market Basket Data
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Table 3.4- Assigning No. and Bit Vector

TID Items
100 1, 10, 12
200 2, 10
300 2, 3, 10, 12
400 2, 5, 9
500 2, 3, 6, 10
600 5, 9, 10
700 1, 6, 9
800 3, 5, 10, 12
900 9, 10
1000 6,12

Table 3.5- Transaction items as Number

Large 1-itemsets are those which achieve minimum number of 1's in BVi (bit vector of 

item i). So large 1-itemsets are {2, 4, 7, 8, 9, 10, 11, 12, 13}.

For generating large 2-itemsets, use bitwise AND operation between large 1-itemsets. 

And also do not use AND operation between those item which has parent child relation. 

So these are logical AND operation between large 1-itemsets:

Item names Items number Bit Vector
(BV)

SONY 1 1000001000
IBM 2 0111110000
DELL 3 0010100100
LAPTOP 4 1111101100
LG 5 0001010100
HCL 6 0000101001
DESKTOP 7 0001111001
COMPUTER 8 1111111101
FLASH-D 9 0001011010
USB 10 1110110110
STORAGE 11 1111111110
WEBCAM 12 1010000101
ACCESS 13 1111111111
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BV2^BV7= 0111110000^ 0001111001=0001100000 

BV2^BV9= 0111110000 ^ 0001011010 =0001000000 

BV2^BV10= 0111110000^ 1110110110=0110100000 

BV2^BV11= 1111111110^ 1111111110=0111100000

BV2^BV12= 1111111110 1010000101=0010000000 

BV2^BV13= 0111110000^ 1111111111=0111100000 

BV4^BV7= 1111101100^ 0001111001=0001101000

BV4^BV9= 1111101100^ 0001011010=0001001000

BV4^BV10= 1111101100^ 1110110110=1110100100

BV4^BV11= 1111101100^ 1111111110=1111101100

BV4^BV12= 1111101100^ 1010000101=1010000100

BV4^BV13= 1111101100^ 1111111111=1111101100

BV7^BV9= 0001111001^ 0001011010=0001011000

BV7^BV10= 0001111001^ 1110110110=000011000

BV7^BV11= 0001111001^ 1111111110=0001111000

BV7^BV12= 0001111001^ 1010000101=0000000000

BV7^BV13= 0001111001^ 1111111111=0001111001

BV8^BV9= 1111111101^ 0001011010=0001011000

BV8^BV10= 1111111101^ 1110110110=1110110100

BV8^BV11= 1111111101^ 1111111110=1111111100

BV8^BV12= 1111111101^ 1010000101=1010000101

BV8^BV13= 1111111101^ 1111111111=1111111101

BV9^BV10= 0001011010^ 1110110110=0000010010

BV9^BV12= 0001011010^ 1010000101=0000000000

BV10^BV12= 1110110110^ 1010000101=1010000100

BV11^BV12= 1111111110^ 1010000101=1010000100

If number of 1’s in BVi ^ BVj (i>j) achieve minimum support and item i is not ancestor 

of j then draw an edge between vertices i to j. 

So figure 3.4 is graph and edges between items are large 2-itemsets.
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Fig 3.4: graph of generalizes association rule mining

Large 2-itemsets for graph construction as 

{{2, 11}, {2, 13}, {4, 10}, {4, 11}, {7, 11}, {7, 13}, {8, 10}, {8, 11}, {8, 12}, 

{8, 13}} And create edges between these vertices.

Candidate 3-itemsets are {{8, 10, 12}, {8, 11, 12}}

Logical AND operation among these items as

BV8^BV10^BV12= 1111111101^1110110110^1010000101=1010000100

BV8^BV11^BV12= 1111111101^1111111110^1010000101=1010000100

So no more itemsets are frequent, because all candidate 3-itemsets do not satisfy 

minimum support condition.
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3.3 Comparison

Comparison of the algorithms, Apriori and Primitive Association Rule Mining is given in 

this section. There are many advantages of Primitive Association Rule Mining over 

Apriori.

Apriori uses candidate Generate function for generating every candidate k-itemsets and it 

takes enormous amount of time to generate candidate k+1-itemsets from large k itemsets.

However, Primitive Association Rule Mining does not use this function; instead it uses 

graph based approach after generating of large 2–itemsets. 

In primitive association, a graph is constructed with large two itemsets. Using graph, 

large three itemsets can be generated easily without scanning the database.

At each pass in primitive association, it is enough to use graph with k large itemsets for 

generating k+1 candidate itemsets. Traversal of one link list (adjacency list) takes less 

time as compared to Apriori generation function. 

Secondly in Apriori approach we are accessing transaction as a whole or we can divide 

into parts but it takes lot of memory whereas in Primitive Association Rule Mining, 

transactions are converted into bit vector which is based on items. Bit vector

representation takes very less times as well as memory, theoretically 32 times less. 

Primitive Association Rule Mining takes less time since transactions are represented in 

bit vector form, and we are using logical AND, OR  operation which is very fast. Further 

the bit representation consumes less memory also.

Generalized association rule mining (GARM) using graphs works better than cumulate 

approach [8] which is a traditional GARM approach. This is due to the fact that it works 

on bit vector approach, and also there is no need to scan transaction several times and 

also there is no need to prepare parent-child list at each & every iteration.
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CHAPTER 4

                             LINK ANALYSIS AND HITS ALGORITHM

The explosive growth and the widespread accessibility of the Web has led to a surge of 

research activity in the area of information retrieval on the World Wide Web. The 

seminal papers of Kleinberg [1998, 1999] and Brin and Page [1998] introduced Link 

Analysis Ranking, where hyperlink structures are used to determine the relative authority 

of a Web page and produce improved algorithms for the ranking of Web search results.

4.1 Link Analysis Ranking

Ranking is an integral component of any information retrieval system. In the case of Web 

search, because of the size of the Web and the special nature of the Web users, the role of 

ranking becomes critical. It is common for Web search queries to have thousands or 

millions of results. On the other hand, Web users do not have the time and patience to go 

through them to find the ones they are interested in. It has actually been documented that 

most Web users do not look beyond the first page of results. Therefore, it is important for 

the ranking function to output the desired results within the top few pages; otherwise the 

search engine is rendered useless. Furthermore, the needs of the users when querying the 

Web are different from traditional information retrieval. For example, a user that poses 

the query “microsoft” to a Web search engine is most likely looking for the homepage of 

Microsoft Corporation, rather than the page of some random user that complains about 

the Microsoft products. In a traditional information retrieval sense, the page of the 

random user may be highly relevant to the query. However, Web users are most 

interested in pages that are not only relevant, but also authoritative, that is, trusted 

sources of correct information that have a strong presence in the Web. In Web search, the 

focus shifts from relevance to authoritativeness. The task of the ranking function is to 

identify and rank highly the authoritative documents within a collection of Web pages. 

To this end, the Web offers a rich context of information which is expressed through the 

hyperlinks. The hyperlinks define the “context” in which a Web page appears. Intuitively, 

a link from page p to page q denotes an endorsement for the quality of page q. We can 
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think of the Web as a network of recommendations which contains information about the 

authoritativeness of the pages. The task of the ranking function is to extract this latent 

information and produce a ranking that reflects the relative authority of Web pages. 

Building upon this idea, the seminal papers of Kleinberg [1998], and Brin and Page 

[1998] introduced the area of Link Analysis Ranking, where hyperlink structures are used 

to rank Web pages. Here, we work within the hubs and authorities framework defined. A 

link analysis ranking algorithm starts with a set of Web pages. Depending on how this set 

of pages is obtained, we distinguish between query independent algorithms, and query 

dependent algorithms. In the former case, the algorithm ranks the whole Web. The P 

AGERANK algorithm by Brin and Page [1998] was proposed as a query independent 

algorithm that produces a PageRank value for all Web pages. In the latter case, the 

algorithm ranks a subset of Web pages that is associated with the query at hand. 

Kleinberg [1998] describes how to obtain such a query dependent subset. Using a text-

based Web search engine, a Root Set is retrieved consisting of a short list of Web pages 

relevant to a given query. Then, the Root Set is augmented by pages which point to pages 

in the Root Set, and also pages which are pointed to by pages in the Root Set, to obtain a

larger BaseSet of WebPages. This is the query dependent subset of WebPages on which 

the algorithm operates. Given the set of Web pages, the next step is to construct the 

underlying hyperlink graph. A node is created for every Web page, and a directed edge is 

placed between two nodes if there is a hyperlink between the corresponding Web pages. 

The graph is simple. Even if there are multiple links between two pages, only a single 

edge is placed. No self-loops are allowed. The edges could be weighted using, for 

example, content analysis of the Web pages. Usually links within the same Web site are 

removed since they do not convey an endorsement; they serve the purpose of navigation. 

Isolated nodes are removed from the graph. 

Link analysis ranking gives ranking of web pages. Rank of web pages depends on the 

number of access, items available etc. After assigning the weights using an algorithm we 

can give priority to web pages in which if a user wants to get information through 

network then rank of web page will decide as to which related web pages will be 

provided to the user.  As the size increases, its complexity grows so enormously that we 

can no longer grasp the whole picture. However, within small, local areas, the Web is still 
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structured orderly because the link structure is built upon a considerable effort of human 

annotation. Among the algorithms proposed for this purpose, HITS (Hyperlink-Induced 

Topic Search) algorithm is studied most widely. This algorithm models communities as 

interconnection between 'authorities' and 'hubs.' Despite the theoretical foundations, 

HITS algorithm is reported to fail in some real situations.

4.2 HITS (Hyperlink-Induced Topic Search) Algorithm

An overview of the HITS algorithm:

Independent of Brin and Page [1998], Kleinberg [1998] proposed a different definition of

the importance of Webpages. Kleinberg argued that it is not necessary that good 

authorities point to other good authorities. Instead, there are special nodes that act as hubs 

that contain collections of links to good authorities. He proposed a two-level weight

propagation scheme where endorsement is conferred on authorities through hubs, rather 

than directly between authorities. In his framework, every page can be thought of as 

having two identities. The hub identity captures the quality of the page as a pointer to 

useful resources, and the authority identity captures the quality of the page as a resource 

itself. If we make two copies of each page, we can visualize graph G as a bipartite graph 

where hubs point to authorities. There is a mutual reinforcing relationship between the 

two. A good hub is a page that points to good authorities, while a good authority is a page 

pointed to by good hubs. In order to quantify the quality of a page as a hub and an 

authority, Kleinberg associated with every page a hub and an authority weight. Following 

the mutual reinforcing relationship between hubs and authorities, Kleinberg defined the 

hub weight to be the sum of the authority weights of the nodes that are pointed to by the 

hub, and the authority weight to be the sum of the hub weights that point to this authority. 

HITS algorithm mines the link structure of the Web and discovers the thematically 

related Web communities that consist of 'authorities' and 'hubs.' Authorities are the 

central Web pages in the context of particular query topics.

For a wide range of topics, the strongest authorities consciously do not link to one 

another. Thus, they can only be connected by an intermediate layer of relatively 
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anonymous hub pages, which link in a correlated way to a thematically related set of 

authorities. These two types of Web pages are extracted by iteration that consists of 

following two operations. 

                                               

Xp  = 

Yq=

For a page p, the weight of Xp is updated to be the sum of Yq over all pages q that link to 

p where the notation qàp indicates that q links to p. In a strictly dual fashion, the weight 

of Yq is updated to be to the sum of Xp. Therefore, Authorities and hubs exhibit what 

could be called mutually reinforcing relationships: a good hub points to many good 

authorities, and a good authority is pointed to by many good hubs. 

After getting authority value we can estimate that, which web pages have what priority. 

According to it we can select some top priority pages, and send it to user when query 

comes.

Kleinberg [1998] proposed the following iterative algorithm for computing the hub and 

authority weights. Initially all authority and hub weights are set to 1. At each iteration, 

the operations O (“out”) and I (“in”) are performed. The O operation updates the 

authority weights, and the I operation updates the hub weights. A normalization step is 

then applied, so that the vectors Xp and Yq become unit vectors in some norm. The 

algorithm iterates until the vectors converge. This idea was later implemented as the 

HITS (Hyperlink Induced Topic Search) algorithm. The algorithm is summarized below: 

HITS Algorithm

Initialize all weights to 1

Repeat until the weights converge

Do

For every hub p 

Xp  = 

For every authority q
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Yq=

Normalize 

End

The convergence of the H ITS algorithm does not depend on the normalization. Indeed, 

for different normalization norms, the authority weights are the same, up to a constant 

scaling factor. The relative order of the nodes in the ranking is also independent of the 

normalization.
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CHAPTER 5

ASSOCIATION RULE MINING WITHOUT PREASSIGNED 

WEIGHTS

Ke Sun and Fengshan Bai [6] has purposed a way to find out weights of items and 

weights of transactions without pre-assigned weights in the database. For finding weights 

of items and weights of transactions, Ke Sun and Fengshan Bai [6] have taken concept of 

HITS model which is based on Link Ranking Analysis that provides a way to find out 

weights of items and weights of transactions.

All algorithms that we have discussed earlier, there is not weights to items and 

transactions. Whereas, using weighted association rule mining, we have to assign weights 

to items and/or transactions. In Weighted association rule mining, we have to assign 

weight to items and/or transactions at the beginning in the database. But according to Ke 

Sun [1], we can find weights of items and weights of transactions. Method to assign 

weights to items on the basis of items belongs to transactions, and similarly we can find 

weight of transaction on the basis of items, that are available in transactions. And also, if 

an item belongs in more transactions, then weight or importance of that item is high. 

Similarly, if a transaction that contains many items, then weight or importance of that 

transaction is also high. i.e., a good transaction, which is highly weighted, should contain 

many good items; at the same time, a good item should be contained by many good 

transactions. The reinforcing relationship of transactions and items is just like the 

relationship between hubs and authorities in the HITS model.

So, we can find weights of items and weights of transactions by HITS model. We can 

assume that every transaction as a link/hub (which contain many items) and items belong 

to the transaction as an authority (item belongs to many link).

Wang and Su [9] proposed a novel approach on item ranking. A directed graph is created 

where nodes denote items and links represent association rules. A generalized version of 

HITS is applied to the graph to rank the items, where all nodes and links are allowed to 

have weights [10].
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    TID        Transaction

1 {1, 2, 3, 4}

2 {3, 4, 5}

3 {1, 4, 5}

4 {2, 5}

           (a)

{1, 2, 3, 4} 1

{3, 4, 5} 2

{1, 4, 5} 3

{2, 5} 4

5

        (b)

Figure 5.1: The bipartite graph representation of a database. (a) Database.
(b) Bipartite graph

5.1 W-Support: A New Measurement 

Item set evaluation by support in classical association rule mining is based on counting. 

In this section, we will introduce a link-based measure called w-support and formulate 

association rule mining in terms of this new concept. The previous section has 

demonstrated the application of the HITS algorithm to the ranking of the transactions. As 

the iteration converges, the authority represents the “significance” of an item i. 

accordingly; we generalize the formula of auth to depict the significance of an arbitrary 

item set, as the following definition shows:

Definition 1. The w-support of an item set X is defined as

Wsupp(X)    =        

Where, hub (T) is the hub weight of transaction T. An item set is said to be significant if 

its w-support is larger than a user specified value.
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5.2 Algorithm for Mining Significant Itemsets without Pre-Assigned 
Weight

Start

For all items i initialize auth (i) =0

For (l=0; l<num_it; l++)

{

For each i set auth’ (i) =0

For all transaction t belongs to database

{

Hub (t) = sum of all auth (i) where i belongs to t

Auth’ (i) +=hub (t) for each item i belongs to t 

}

Auth (i) =auth’ (i) for each i 

Normalize auth

}

L1= {{i} | wsupp(i)>minsupp}

K=2

While (Lk-1 ≠ ) 
{
          Ck = Apriori-gen (Lk-1)   // Ck contains K-itemsets using Apriori-gen function 

For all transactions t D 
{
          Ct = subset (Ck, t) //check weather Ck belongs to Transaction t

            For all candidates c   Ct 
{
              c.wsupp+=hub(t)
}
H+=hub(t)
}
Add Lk to result list 

Lk = {c    Ck | c.wsupp/h >= minsup} 
Increment k by 1
}
End
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Example of Mining weighted association rule without preassigned 
weights

Transactions are:

1=Bread, Milk
2=Bread, Beer, Diaper, Eggs
3=Milk, Beer, Diaper, Coke
4= Bread, Milk, Beer, Diaper
5=Bread, Milk, Diaper, Coke

Items→
Transactions
       ↓

Auth(0)
Bread
(B)

Auth(1)
Milk
(M)

Auth(2)
Beer
(Be)

Auth(3)
Diaper
(D)

Auth(4)
Eggs
(E)

Auth(5)
Coke
(C)

1 or Hub(0) 1 1 0 0 0 0
2 or Hub(1) 1 0 1 1 1 0
3 or Hub(2) 0 1 1 1 0 1
4 or Hub(3) 1 1 1 1 0 0
5 or Hub(4) 1 1 0 1 0 1

Table 5.1 Data Representation

Initialize all auth (i) =1, auth’ (i) =0;

L=0

Hub (0) = auth (0) +auth (1) = 1+1=2
Auth’ (0) =2
Auth’ (1) =2

Hub(1)= auth(0)+auth(2)+ auth(3)+auth(4)=1+1+1+1=4
Auth’ (0)=6
Auth’(2)=4
Auth’(3)=4
Auth’(4)=4

Hub(2)= auth(1)+auth(2)+ auth(3)+auth(5)=1+1+1+1=4
Auth’(1)=2+4=6
Auth’(2)=4+4=8
Auth’(3)=4+4=8
Auth’(5)=4

Hub(3)= auth(0)+auth(1)+ auth(2)+auth(3)=1+1+1+1=4
Auth’(0)=6+4=10
Auth’(1)=6+4=10
Auth’(2)=8+4=12
Auth’(3)=8+4=12
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Hub(4)= auth(0)+auth(1)+ auth(3)+auth(5)=1+1+1+1=4
Auth’(0)=10+4=14
Auth’(1)=10+4=14
Auth’(3)=12+4=16
Auth’(5)=4+4=8

Therefore,

Auth’(0)= 14; Auth’(1)=14; Auth’(2)=12; Auth’(3)=16; Auth’(4)=4; Auth’(5)=8

Total= 14+14+12+16+4+8=68

Normalize,

Auth(0)=14/68=0.206; (i.e. Auth’(0)/Total)
Auth(1)= 14/68=0.206;
Auth(2)=0.176
Auth(3)=0.235
Auth(4)=0.059
Auth(5)=0.118

L=1 (After normalization)

Total= 2.431
Auth(0)= 0.209
Auth(1)=0.213
Auth(2)=0.174
Auth(3)=0.234
Auth(4)=0.053
Auth(5)=0.117

L=2 (After normalization)

Total= 2.459
Auth(0)= 0.209
Auth(1)=0.214
Auth(2)=0.174
Auth(3)=0.234
Auth(4)=0.052
Auth(5)=0.117

L=3 (After normalization)

Total= 2.462
Auth(0)= 0.209
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Auth(1)=0.215
Auth(2)=0.174
Auth(3)=0.234
Auth(4)=0.053
Auth(5)=0.117

L=4 (After normalization)

Same as L=3

Hence converged.

Hub(0)=auth(0)+auth(1) = 0.209+0.215= 0.424

Hub(1)= auth(0)+auth(2)+auth(3)+auth(4)= 0.209+0.174+0.234+0.117= 0.669

Hub(2)= auth(1)+auth(2)+auth(3)+auth(5)= 0.215+0.174+0.234+0.117=0.74

Hub(3)= auth(0)+auth(1)+auth(2)+auth(3)=0.209+0.215+0.174+0.234=0.832

Hub(4)= auth(0)+auth(1)+auth(3)+auth(5)= 0.209+0.215+0.234+0.117= 0.775

Therefore,

Hub(0)=0.424
Hub(1)=0.669
Hub(2)=0.74
Hub(3)=0.832
Hub(4)=0.775

Squares of Hub’s

[Hub(0)]2 = 0.1798
[Hub(1)]2 = 0.4476
[Hub(2)]2 = 0.5476
[Hub(3)]2 = 0.6922
[Hub(4)]2 = 0.6006

Sum= [Hub(0)]2 + [Hub(1)]2 +[Hub(2)]2 +[Hub(3)]2 +[Hub(4)]2

= 2.468

Normalize squares of Hub’s

Hub’(0)= [Hub(0)]2/2.468 = 0.0728
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Hub’(1)= 0.18136
Hub’(2)= 0.2219
Hub’(3)= 0.2804
Hub’(4)= 0.2434

Final Hub Weights

Hub(0)=√ Hub’(0)=0.27
Hub(1)=0.426
Hub(2)=0.471
Hub(3)=0.53
Hub(4)=0.493

Tabular Representation

Transaction ID Transaction Hub Weights
1 Hub(0) 0.27
2 Hub(1) 0.426
3 Hub(2) 0.471
4 Hub(3) 0.53
5 Hub(4) 0.493
Total Hub Weight= 2.19

1-Itemset Support w-support
B 0.8 0.78
M 0.8 0.81
Be 0.6 0.65
D 0.8 0.88
E 0.2 0.19
C 0.4 0.44

NOTE:-

Add hub weights of transactions in which item whose w-support 
need to be calculated is available

W-support=  ________________________________________________________
Total Hub weights

e.g. w-support(B)= (0.27+0.426+0.53+0.493)/2.19= 0.78
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Using Aproiri approach

Let, min_w_support=50%( i.e. 0.5)

Items Selected= B,M, Be,D

1-itemsets
{B}, {M}, {Be}, {D}

w-support=      0.78 0.81 0.65   0.88

2-itemsets

{B,M}=0.27+0.53+0.493=1.293
{B,Be}=0.426+0.53=0.956
{B,D}=0.426+0.53+0.493=1.449
{M,Be}=0.471+0.53=1.001
{D,M}=0.471+0.53+0.493=1.494
{D,Be}=0.426+0.471+0.53=1.427

Total of all Hub weights= 2.19

{B,M}=1.293/2.19=0.59
{B,Be}=0.956/2.19=0.437
{B,D}=1.449/2.19=0.662
{M,Be}=1.001/2.19=0.457
{D,M}=1.494/2.19=0.682
{D,Be}=1.427/2.19=0.652

Selected frequent 2-itemsets are:-

{B,M}, {B,D}, {D,M},{D,Be}

3-itemsets:
{B,M,D}= 0.53+0.493= 1.023
{D,M,Be}= 0.471+0.53= 1.001

Total of all Hub weights= 2.19

{B,M,D}= 1.023/2.19= 0.47
{D,M,Be}=1.001/2.19=0.457

Selected frequent 3-itemsets are:-
NONE,  Since support value<0.5 (i.e. min_w_support )
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Frequent itemsets selected are:-

{B}, {M},{Be},{D}, {B,M},{B,D}, {D,M}, {D, Be}.

5.3 Comparison 

There are so many variations of Apriori algorithms that have been developed. We are 

comparing two algorithms, which are Apriori with their variations and association rule 

mining without pre-assign weights

AprioriTid and AprioriHybrid are just variations of Apriori. In Apriori, at every step, we 

have to find candidate k-itemsets, and we have to scan whole database at each k, which is 

time consuming. So, AprioriTid algorithm has given a solution for finding candidate k-

itemsets without scanning whole transaction. This algorithm works on the basis of 

transaction Id that is associated with every transaction. Apriori Hybrid is combined 

approach of Apriori and Apriori Tid, in which if some part of transactions (which is 

stored in other place) do not fit into the memory then use Apriori algorithm, otherwise 

swap Apriori algorithm to Apriori Tid.

In general, using Apriori AprioriTid and AprioriHybrid algorithms we can find frequent 

itemsets, whereas we assume that items and transactions have equal weights. Sometimes, 

it is important to know that whether every items have equal weights or not, if all items 

have equal weights then Apriori and their variation can do good job for finding frequent 

itemsets, and if weights of items are not equal, then Apriori and their variations do not 

work. So, to solve this problem, we have two solutions, whether we can assign weights to 

items and transactions, or to use some algorithms, so that it can give weights of items and 

weights of transactions. If we have weights of items in the beginning  in the database then 

we can find frequent itemsets using weighted association rule of mining, otherwise we 

can use association rule of mining without pre-assign weights, which gives weights of 

items and weights of transactions using HITS algorithm.
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CHAPTER 6

                                      IMPLEMENTATIONS AND RESULTS

There are four implementations have been done in this Thesis, all these implementation

have been compared on different datasets. Datasets that has taken which is real life

datasets as well as computer generated datasets (IBM Synthetic data generator). There are 

so many real life datasets which were taken, these are 

Kosarak- The kosarak dataset comes from the click-stream data of a Hungarian online 

news portal, Number of Instances =990,002, Number of Attributes= 41,270.

Chess- A game datasets. Attribute Information:

Classes (2): -- White-can-win ("won") and White-cannot-win ("nowin"). 

It believes that White is deemed to be unable to win if the Black pawn can safely 

advance. Number of Instances= 3196, Number of Attributes=36.

Retail- this is retail datasets, Number of Instances =16470, Number of Attributes= 88162

Mushroom- This data set includes descriptions of hypothetical samples corresponding to 

23 species of gilled mushrooms. Each species is identified as definitely edible, definitely 

poisonous, or of unknown edibility and not recommended. This latter class was combined 

with the poisonous one. The Guide clearly states that there is no simple rule for 

determining the edibility of a mushroom. Number of Instances = 8124, Number of 

Attributes = 22.

Connect-This database contains all legal 8-ply positions in the game of connect-4 in 

which neither player has won yet, and in which the next move is not forced. Number of 

Instances= 67557, Number of Attributes=42.

PlumbsStar - Number of Instances =49046, Number of Attributes= 49046.
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Some implementations have been done on IBM Synthetic data generator datasets, with 

different sizes, with different transaction, with different number of items in each 

transaction.

Implementation of Apriori and combined approach of Apriori and 

HITS algorithms

In Thesis part one; we have implemented one of the new approaches to find frequent 

itesets in which items have not pre-assigned weights. This implementation has combined 

approach of Apriori and HITS algorithm. It has implemented up to 62MB of database.

These implementations have been done with various datasets with varying sizes of dasets, 

with varying of transactions, with varying number of itemsets.

Implementation of Apriori and Primitive Association rule mining 

algorithms

Implementation in the part two of the Thesis is to find frequent itemsets using graph

based algorithm.

This implementation has been compared with Apriori approach. Here we have given 

comparison chart for many real life datasets with varying sizes. There are three charts for 

each dataset. Here X- axis represents dataset names and Y-axis represents time in seconds 

which is taken by algorithms. 
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Some results of this algorithm are:

Database name Chess

Large itemsets Time taken by Apriori
Time taken by 
Primitive

3 0.41 0.37
4 4.64 4.04
5 50.43 43.43



45

Database name Mushroom

Large itemsets Time taken by Apriori
Time taken by 
Primitive

3 0.46 0.29
4 2.166 1.86
5 12.04 11.11
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Database name Retail

Large itemsets Time taken by Apriori
Time taken by 
Primitive

3 1.59 1.45
4 1.63 1.5
5 1.75 1.51
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Database name Connect

Large itemsets Time taken by Apriori
Time taken by 
Primitive

3 8.55 7.46
4 69.58 63.25
5 849.53 812.15
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Database name Kosarak

Large itemsets Time taken by Apriori
Time taken by 
Primitive

3 13.47 13.07
4 13.65 13.35
5 13.79 13.5
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Database name Pumbs

Large itemsets Time taken by Apriori
Time taken by 
Primitive

3 27.59 22.59
4 517.94 486.94
5 5781.67 5439.89

Database name PumbsStar

Large itemsets Time taken by Apriori
Time taken by 
Primitive

3 11.37 9.19
4 149.64 136.64
5 322.62 265.62
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Implementation of Generalized Association rule mining algorithms

In this implementation, we found large itemsets using graph and transactions. It works 

better than cumulate approach[8,11] because it uses bit vector approach to store datasets 

and it need not use to scan transaction many times, and also it need not to prepare parent-

child list at each iteration.

Here we have been represented a taxonomy in figure-6.1, and according to this taxonomy 

we found frequent itemsets on different datasets. These are

5 8

20

21 3

29

23 2816

12

4 6 7 9 10 11

14 15 17 18 19 21 22 24 2625 27

Figure 6.1: Taxonomy of 20 items

13
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Number of transaction 1000, Number of different items 20, frequent itemsets are

{3, 4, 5, 8, 11, 12, 13, 22, 23, 26, 28, 29, (3, 8), (3, 12), (3, 13), (3, 29), (5, 8), (5, 12),    

(5, 13), (5, 29), (8, 12), (8, 28), (8, 29), (12, 29), (13, 28), (13, 29), (5, 12, 29)}

Number of transaction 500, Number of different items 20, frequent itemsets are

{4, 5, 8, 11, 9, 12, 13, 22, 18, 20, 26, 28, 29, (5, 12), (5, 20), (5, 29), (8, 20), (8, 28), (8, 

29), (12, 28), (12, 29), (13, 18), (13, 20), (13, 23), (13, 28),(13, 29), (20, 23), (20, 28), 

(23, 28), (5, 12,28)), (5,12,29) }
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CHAPTER 7

                                     CONCLUSIONS AND FUTURE SCOPE

7.1 Conclusion

An efficient way for discovering the frequent set can be very useful in various data 

mining problems, such as discovery of association rules. In this Thesis, new approaches 

to association rule mining has been explored in depth. In part one of the Thesis, weighted 

association rule mining without pre-assigned weights was discussed and implementation 

was done on real life datasets. Comparison of the algorithms, Apriori and Primitive 

Association Rule Mining was done in this section and there we found many advantages 

of Primitive Association Rule Mining over Apriori.

In part two of the Thesis, graph based association rule mining for primitive and 

generalizes approach with taxonomies has been discussed in depth. The efficiency of the 

approach has been compared with apriori with regard to computational time. This has 

been demonstrated on number of real life datasets. Here we compared variations of 

Apriori with and without pre-assigned weights. We found that it was better to use a

hybrid approach to fulfill our task in hand but a bit complex to implement as it needs 

swapping of approaches on the fly.

The link-based model is useful in adjusting the mining results given by the traditional 

techniques. Some interesting patterns may be discovered when the hub weights of 

transactions are taken into account. Moreover, the transaction ranking approach is 

precious for estimating customer potential when only binary attributes are available, such 

as in Web log analysis or recommendation systems.

7.2 Future Scope

For our approach, the related information may not fit in the main memory when the size 

of the database is very large. In the future, we shall consider this problem by reducing the 

memory space requirement. Also, we shall apply our approach on different applications, 

such as document retrieval and resource discovery in the World Wide Web environment.

Best part of previously known algorithms can be combined with to develop hybrid 
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approaches which perform best for all cases. Number of solutions has been presented, but 

still a lot of research is possible in this particular area. Descriptive data mining techniques 

were discussed in the thesis which can be further extended to explore various other 

approaches. Besides that, the work can be extended to perform predictive data mining 

task. 

And last but not the least; here also we are dealing with the time-space tradeoff problem.

As the size of frequent itemset increases, computational time for the initial phases 

increases exponentially with increase in the requirement in memory space. So, a better 

way to consider only the relevant transaction or items can be possible field of research. If 

data cannot fit in the memory than more page faults may occur resulting in the decrease 

in the performance of the system. 
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